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Setting

C1�endomorphisms on compact boundaryless

manifolds
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Goal

To find necessary conditions and topological ob-

structions for the existence of robustly transitive

maps.
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Diffeomorphisms

Mañé’82: RT , Anosov. (dim. 2)

Shub’71: RT partially hyperbolic, but not hyperbolic

(dim. 4).

Mañé’78: Derived from Anosov (dim. 3).

Bonatti-Viana’00: RT with dominated splitting, but not

partially hyperbolic (dim. 4).

DPU’99 - BDP’03

C1-RT ) DOMINATED SPLITTING
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Local diffeomorphisms

Shub 60’s: Expanding maps.

Gromov’81: Infranilmanifolds are the only manifolds

admitting expanding maps.

Lizana-Pujals’13: Necessary and sufficient conditions

are given for having RT local diffeomorphisms

. volume expanding is C1 necessary;

. it is not necessary to have a “weak form of

hyperbolicity” ([BDP’03] does not hold!).
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Endomorphisms w/critics

Which homotopy classes admit C1-robustly transitive

endomorphisms displaying critical points?

Which manifolds support these kind of maps?

Is it necessary some “weak form of hyperbolicity”?
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Examples on surfaces

Berger-Rovella’13, Iglesia-Lizana-Portela’16

|µ|  1 < |�|

Lizana-Ranter’16-21

1 < |µ| < |�|, |µ| = 0 < 1 < |�|

. robustly transitive;

. persistent critical points;

. exhibit family of unstable cones;

. dim(Ker(Df ))  m � 1 (necessary condition);

. exhibit a weak form of hyperbolicity.
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On surfaces

Lizana-Ranter’21 [Adv. in Mathematics 390, 2021]

. Theorem A. f robustly transitive and Cr(f ) 6= ;
) f is partially hyperbolic.

. Theorem B. M admits RT endomorphism

) M is either T2 or K2.

. Corollary. There are no robustly transitive on S2.
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On surfaces

Lizana-Ranter’21

. Theorem C. f transitive with dominated splitting

) f is homotopic to a linear map having at least one

eigenvalue with modulus larger than one.

. Corollary. f is robustly transitive

) f is homotopic to a linear map having at least one

eigenvalue with modulus larger than one.

. Corollary. There are no robustly transitive surface

endomorphisms homotopic to the identity.
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On higher dimension

Lizana-Potrie-Pujals-Ranter’21

. Theorem A. Every robustly transitive endomorphism

displaying critical points admits a nontrivial dominated

splitting.

. Corollary. Even dimensional sphere do not admit

robustly transitive endomorphisms.
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Sketch of the Proof

f0 RT displaying critical points and U0(f0).

(Key Lemma) There are no robustly transitive

endomorphisms exhibiting full-dimensional kernel.

There exists 1   < d the smallest integer satisfying

dim ker(Df m)  , 8f 2 U0, m � 1, (1)

where dim ker(Df ) = maxx2M dim ker(Dfx).
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Sketch of the Proof

f0 can be approximated by f satisfying equality in (1).

Let mf the smallest positive integer such that

{x 2 M : dim ker(Df m
x ) = } has nonempty interior for some x 2 M;

or

if such subset above has empty interior then we take mf as the

smallest one such that dim ker(Df m
x ) = , for some x 2 M.

Cr(f ) := {x 2 M : dim ker(Df mf
x ) = }.

F0 - the set of all endomorphisms f in U0 which Cr(f )
has nonempty interior.
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Sketch of the Proof

For f 2 F0

⇤f =

⇢
(xi)i ✓ M

����
xi+1 = f (xi), 8i 2 Z, 9(in)n ✓ Z s.t.

xin 2 Cr(f ) for infinitely many in

�

E � F candidate for the invariant (dominated) splitting

over ⇤f .

The splitting is extended to the closure of ⇤f .
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