Mean Dimension Expansive Dynamical Systems

Welington Cordeiro

UNIVESP

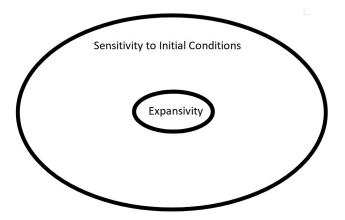
A Living Singularity

Celebrating Maria José Pacifico's 70th birthday

April 29, 2022

Celebrating Maria José Pacifico's 70th birthday

医下子 医



æ

Expansivity

Definition 1 (Utz; PAMS 1950)

We shall say that f is expansive if there is $\delta > 0$ such that

$$\Gamma_{\delta}(x) = W^{s}_{\delta}(x) \cap W^{u}_{\delta}(x) = \{x\}$$

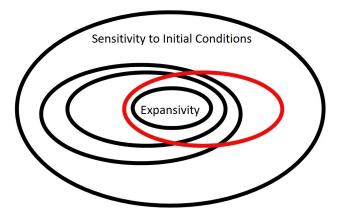
for each $x \in X$.

Infinite dimension?

Theorem 2 (Mané; 1979)

If $f : X \to X$ is an expansive homeomorphism, then the topological dimension of X is finite.

()



æ

(日) (日) (日)

Definition 3 (Kato; CJM 1993)

We shall say that f is Continuum Wise expansive if there is $\delta > 0$ such that if $A \subset X$ is a non-trivial continuum, then there is $n \in \mathbb{Z}$ such that diam $(f^n(A)) > \delta$.

Infinite Dimension?

Theorem 4 (Kato; CJM 1993)

If $f : X \to X$ is an CW-expansive homeomorphism, then the topological dimension of X is finite.

Topological Entropy

Definition 5

 $E \subset K \subset X$ is an (n, ϵ) -separated set if

$$\sup_{|i| < n} d(f^i(x), f^i(y)) > \epsilon, \quad \forall x, y \in E.$$

Let $s(n, \epsilon, K)$ be the maximal cardinality of an (n, ϵ) -separated set in K.

Topological Entropy

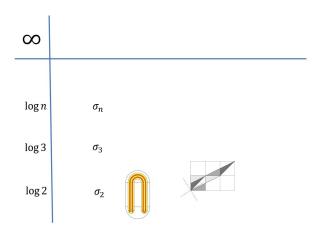
Definition 6

The Topological Entropy of f in $K \subset X$ is obtained as

$$h(f, K) = \lim_{\epsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log s(n, \epsilon, K).$$

A B M A B M

Topological Entropy



æ

★ ∃ ► < ∃ ►</p>

Mean Dimension [Gromov, 1999]

Definition 7

Let α be an open cover of X. Define the *order* of α by

$$ord(\alpha) = \max_{x \in X} \sum_{U \in \alpha} 1_U(x) - 1.$$

and

$$D(\alpha) = \min_{\beta \succ \alpha} \operatorname{ord}(\beta)$$

Mean Dimension [Gromov, 1999]

Definition 8

Let α be an open cover of X. Define

$$\alpha^n = \bigvee_{i=0}^{n-1} f^{-i} \alpha.$$

Finally, define the **Mean Dimension** of f by

$$mdim(X, f) = \sup_{\alpha} \lim_{n \to \infty} \frac{1}{n} D(\alpha^n).$$

Mean Dimension [Gromov, 1999]

Proposition (Lindenstrauss and Weiss, 2000)

Let Σ_d be the shift on $([0,1]^d)^{\mathbb{Z}}$. Then

 $\textit{mdim}(([0,1]^d)^{\mathbb{Z}}, \Sigma_d) = d.$

★ ∃ ► < ∃ ►</p>

Mean Dimension [Gromov, 1999]

Topological Entropy		Mean Dimension
+∞	$(([0,1]^d)^{\mathbb{Z}},\Sigma_d)$ $(([0,1]^2)^{\mathbb{Z}},\Sigma_2)$	d 2
100	$([0,1]^{\mathbb{Z}},\Sigma_1)$	1
log n	$(\{0,\ldots,n\}^{\mathbb{Z}},\sigma_n)$	0
log 3	$(\{0,1,2\}^{\mathbb{Z}},\sigma_3)$	0
log 2	$(\{0,1\}^{\mathbb{Z}},\sigma_2)$	

æ

∃ ► < ∃ ►</p>

Entropy expansive

Definition 9 (Bowen; TAMS 1972)

We shall say that f is Entropy expansive if there is $\delta > 0$ such that

 $h(\Gamma_{\delta}(x)) = 0$

for each $x \in X$.

★ ∃ ► < ∃ ►</p>

Mean Dimension Expansive

Definition 10

We shall say that f is Mean Dimension Expansive if there is $\delta > 0$ such that

$$mdim(\Gamma_{\delta}(x)) = 0$$

for each $x \in X$.

4 3 6 4 3 6

Mean Dimension Expansive

Definition 11

We shall say that f is Mean Dimension Expansive if there is $\delta > 0$ such that

$$mdim(\Gamma_{\delta}(x)) = 0$$

for each $x \in X$.

Metric Mean Dimension [Lindenstrauss and Weiss, 2000]

Definition 12

The Metric Mean Dimension of (f, d) in $K \subset X$ is obtained as

$$mdim_M(f, K, d) = \liminf_{\epsilon \to 0} \frac{1}{|\log \epsilon|} \limsup_{n \to \infty} \frac{1}{n} \log s(n, \epsilon, K).$$

And the Metric Mean Dimension of f in K by

$$mdim_M(f, K) = \inf_d mdim_M(f, K, d)$$

Metric Mean Dimension [Lindenstrauss and Weiss, 2000]

Theorem 13 (Lindenstrauss and Weiss, 2000)

For any metric d on X we have

 $mdim(f) \leq mdim_M(f, d)$

Theorem 14 (Lindenstrauss, 1999)

If f is an extension of a minimal system, then there is a metric d such that

 $mdim(f) = mdim_M(f, d)$

Metric Mean Dimension Expansive

Definition 15

We shall say that f is Metric Mean Dimension Expansive if there is $\delta>0$ such that

 $mdim_M(\Gamma_{\delta}(x)) = 0$

for each $x \in X$.

Mean Dimension Expansive

• $\{f_n\}$ with $h(f_n) \to \infty$. The product with the Tychonoff topology

• $(([0,1]^d)^{\mathbb{Z}}, \Sigma_d)$ are not Metric mean dimension expansive

4 E 6 4 E 6

Thank you for your attention!

Parabéns e felicidades Zezé!

Welington Cordeiro - UNIVESP Mean Dimension Expansive Dynamical Systems