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Ergodic theory in a (tiny) nutshell

Dynamics: f : M→M Observable: φ : M→ R

Invariant measure: μ(f−1A) = μ(A);

Ergodic measure: A = f−1A =⇒ μ(A) ∈ {0,1}.

Birkhoff Ergodic Theorem: if μ is ergodic, then

Time average tends to space average

φn(x) =
1

n

n−1
∑

i=0

φ(f ix)
μ−a.e
−−−→
n→∞

E(φ) =

∫

φdμ.
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Continuous time

M smooth Riemannian manifold

Xt : M→M smooth flow (i.e., Xt+s = Xt ◦ Xs for s, t ∈ R)
Invariant measure: μ(XtA) = μ(A), ∀0 < t ≤ 1;

Ergodic measure:
∃ϵ > 0 : A = XtA, ∀0 < t < ϵ =⇒ μ(A) ∈ {0,1}.

Birkhoff Ergodic Theorem: if μ is ergodic, then

Time average tends to space average

φT(y) =
1

T

∫ T

0
φ(Xty)dt

μ−a.e
−−−→
T→∞

E(φ) =

∫

φdμ.
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Physical/SRB measure.

Is there an invariant physical/SRB measure μSRB?

That is, a measure μSRB so that Leb(B(μSRB)) > 0 where

B(μSRB) =

¨

y ∈M :
1

T

∫ T

0
φ(Xty)dt −−−→

T→∞

∫

φdμSRB,∀φ ∈ C(M)

«

is the ergodic basin of μSRB.

This kind of measure provides asymptotic
information on a set of trajectories that one
hopes is large enough to be observable in
real-world models.
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Statistical stability

Can we allow for small errors on the formulation
of the dynamics not to disturb too much the long
term behavior?

If we consider

U = {Y vector field s.t. Yt admits physical measure μY}

and X ∈ U. Then X is statistically stable if

Small errors disturb space average

‖Yn − X‖C1
Yn∈U−−−→
n→∞

0 =⇒
∫

φdμYn
φ∈C0(M)
−−−−−→
n→∞

∫

φdμ

V. Araujo Statistical stability attracting sets



Setting Examples Proof Bibliography Phys. measure Stability Existence Conditions

Some known results on existence of
physical measures

− − −−
Hyperbolic versus singular flows
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Hyperbolic flows

Hyperbolic flows: all trajectories have a pair of
complementary directions:

in one of them all orbits converge to the trajectory;
in the other direction all orbits diverge from the
trajectory.
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Hyperbolic flows are “classical”

Hyperbolic Theory is the basis for Dynamical
Systems Theory: it provides the most mathematically
rigorous and deep understanding of an important class
of dynamical systems.

This is an open class of flows: all flows nearby an
hyperbolic flow are also hyperbolic.

Hyperbolic flows do not admit fixed points
(singularities or equilibria) accumulated by
regular orbits in invariant sets.

However, there are important open classes of
systems which are not hyperbolic and that
frequently appear in applications.
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Singular flows which are “almost hyperbolic”

The Lorenz attractor is a flow with an equilibrium
accumulated by regular orbits which also belongs to an
open class
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Attractors and attracting sets

An invariant compact set Λ is an attracting set for a
vector field X if there exists a trapping region U s.t.

Xt(U) ⊂ U for large t > 0 and Λ =
⋂

t>0
Xt(U).

An attracting set becomes an attractor if Λ is
transitive, that is, we can find x ∈ Λ s.t.

O+(x) = {Xt(x) : t > 0} is dense in Λ.
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Existence of physical measures

family vec. fields physical measures ergodic basins
Anosov flows
(transitive)
Axiom A flows
(Hyperbolic)

unique
one for each
attractor

Leb(M \ B(μ)) = 0
Leb(Ui \ B(μi)) = 0
for each attractor

geometric
Lorenz
attractor

unique Leb(U \ B(μ)) = 0

contracting
Lorenz
attractor

unique Leb(U \ B(μ)) = 0

sectional-
hyperbolic
attracting sets

finitely many Leb
�

U\∪iB(μi)
�

= 0

Except the contracting Lorenz (Rovella) attrator,
all the other families are Cr open families (r ≥ 1).
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Physical measures and equilibrium
states
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Physical measures and equilibrium states

Let Λ be a sectional-hyperbolic attracting set /
geometrical or contracting Lorenz attractor /
hyperbolic attractor for a C2 vec. field G with
trapping region U. Then the following are equivalent:

1 μ is an equilibrium state with respect to the central
jacobian: hμ(X1) =

∫

log | detDX1 | Ec|dμ > 0;
2 μ is a SRB measure, i.e., admits an abs. cont.

disintegration along unstable manifolds;
3 μ is a physical measure, i.e., Leb(B(μ)) > 0;

Moreover, the family E of all invariant physical
measures is the following convex hull

E =

(

k
∑

i=1

tiμi :
∑

i

ti = 1; 0 ≤ ti ≤ 1, i = 1, . . . ,k

)

.

V. Araujo Statistical stability attracting sets



Setting Examples Proof Bibliography Phys. measure Stability Existence Conditions

Entropy expansiveness
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Topological entropy

Let g : M→M be a continuous map and K ⊂ M.
For ϵ > 0, n ≥ 1 and x ∈M

B(x, ϵ,n) = {y ∈M : d(gjx,gjy) < ϵ, ∀0 ≤ j < n}.

A subset E ⊂ M is a (n, ϵ)-generator for K if
{B(y, ϵ,n) : y ∈ E} is an open cover of K.

Let rn(K, ϵ) be the smallest cardinality of a
(n, ϵ)-generator for K and r(K, ϵ) = lim sup log rn(K, ϵ)1/n.

The topological entropy of g on K is given by

htop(g,K) = lim
ϵ→0

r(K, ϵ),

and the topological entropy of g is defined by
htop(g) = htop(g,M).

V. Araujo Statistical stability attracting sets



Setting Examples Proof Bibliography Phys. measure Stability Existence Conditions

Entropy expansiveness

For x ∈M and ϵ > 0 we define the two-sided
ϵ-dynamical ball at x as

B(x, ϵ,∞) = {y ∈M : d(gnx,gny) < ϵ, ∀n ∈ Z}

and say that g is ϵ-entropy expansive if all these
infinite dynamical balls have zero topological entropy,
that is,

sup
x∈M

htop
�

g,B(x, ϵ,∞)
�

= 0.

Proposition

If G is entropy expansive, then the metric entropy
function μ 7→ hμ(X1) is upper semicontinuous.
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Conditions for statistical stability
− − −−

of families of vector fields
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Conditions for statistical stability

Let G be a collection of vec. fields with a trapping region
U, s ∈ N 7→ Gs ∈ G is a continuous parametrization, and

Λs(U) = ∩t>0ϕ
Gs

t (U) the corresponding attracting set.

Theorem
Assume each Λs supports finitely many ergodic physical
measures μs

i
,1 ≤ i ≤ ki s.t. Leb

�

U \
∑

iB(μs
i
)
�

= 0; and
1 there are potentials ψs : Λs→ R s.t.

0 = hμ(ϕ
Gs

1 ) +
∫

ψs dμ ⇐⇒ μ a physical measure;
2 the following map is continuous

Ψ : W(U) := {(s,x) ∈ N× U : x ∈ Λs(U)}→ R given by
Ψ(s,x) = ψs(x); and

3 the family G is robustly entropy expansive.
Then Gs ∈ G is statistically stable.
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Statistical stability with several physical
measures

In the general setting of the statement we have:

Statistical stability

For each converging sequence sn ∈ N to s ∈ N and every
choice μsn of a physical measure supported on Λsn,
every weak∗ accumulation point μ of (μsn)n≥1 is a
convex linear combination of the ergodic physical
measures of Λs.

More precisely, this means that
1 there are weights αi ≥ 0 such that

∑

iαi = 1 and
μ =

∑

iαiμ
s
i
; and

2 we have
�

�

�

∫

φdμsn −
∑

iαi
∫

φdμs
i

�

�

� −−−→
n→∞

0 for every
continuous observable φ : U→ R.
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Known examples of application
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Axiom A (hyperbolic) flows

Attracting sets for an Axiom A vector field G of class C2

are finite unions of hyperbolic attractors (basic pieces)
which admit a unique physical measure that is also the
unique eq. state w.r.t. ψG = − log | detDϕG1 | E

u| (here ϕG
t

is the flow generated by G).

Moreover, the hyperbolic property is robust and
so the map X 7→ ψX is well defined for vector fields
X close to G in the C2 topology.

In addition, each X is a neighborhood of G is not only
hyperbolic but also entropy expansive.

Hence, we may apply the Main Theorem and
deduce statistical stability for each basic piece of
an Axiom A vector field which is an attractor.
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Singular-hyperbolic attracting sets –
encompassing the geometrical Lorenz attractor

Singular-hyperbolicity is an extension of the notion of
hyperbolicity encompassing sets with equilibria
accumulated by regular orbits.

A singular-hyperbolic set Λ is
a partially hyperbolic set: there exists a splitting
TΛM = Es ⊕ Ecu, where ds = dimEs

x
≥ 1 and

dcu = dimEcu
x

= 2 for x ∈ Λ, and constants C > 0,
λ ∈ (0,1) s.t. for t > 0 we have

uniform contraction on Es: ‖Dϕt |Esx‖ ≤ Cλt; and
domination: ‖Dϕt |Esx‖ · ‖Dϕ−t |E

cu
ϕtx
‖ ≤ Cλt.

with area expansion on Ecu: | det(Dϕt | Ecux )| ≥ Cλ−t;
any equilibrium of Λ, if any, is hyperbolic.
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Singular-hyperbolic attracting sets and
statistical stability

The assumptions of the Main Theorem are known to
hold for singular-hyperbolic attracting sets with the
potential ψG = − log | detDϕG1 | E

cu|: existence of
finitely many physical/SRB measures and robust
entropy expansiveness for singular-hyperbolic
attracting sets is established in

A., M. J. Pacifico, Pujals, Viana:
“Singular-hyperbolic attractors are chaotic”. TAMS,
2009. [unique SRB, transitive case]
A., Souza, Trindade: “Upper Large Deviations Bound
for Singular-Hyperbolic Attracting Sets”. JDDE,
2019. [finite # erg. SRB, non-transitive]
M. J. Pacifico, F. Yang, J. Yang: “Entropy theory for
sectional hyperbolic flows”. An. l’IHP, 2020. [robust
entropy expansiveness]
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Other strategies to obtain statistical stability

The dynamics on singular-hyperbolic attracting sets is
amenable to reduction to a global Poincaré return
map on a finite collection of cross-sections:
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Reduction to one-dimensional transformation

There is also a further reduction to a quotient map
along the stable leaves tangent to the stable
bundle.

x

y=f(x)

For the geometric Lorenz attractor, this procedure
ends with the one-dimensional Lorenz
transformation.
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Statistical properties from the reduction

The physical measure can be constructed from
the acip of the one-dimensional map and
statistical stability can be deduced from this:

Alves, Soufi: “Statistical stability of geometric
Lorenz attractors”. Fund. Math., 2014.
Bahsoun, Ruziboev: “On the statistical stability of
Lorenz attractors with a C1+α stable foliation”.
ETDS, 2018.

Many other finer properties can be deduced:
A., Melbourne: “Exponential decay of correlations
for nonuniformly hyperbolic flows with a C1+α stable
foliation, including the classical Lorenz attractor”.
AHP, 2016.
Bahsoun, Melbourne, Ruziboev: “Variance
Continuity for Lorenz Flows”. AHP, 2020
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New examples of application
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Sectional-hyperbolic flows

Sectional-hyperbolicity is an extension of singular
hyperbolicity with central dimension dcu > 2 where the
area expansion property is replaced by sectional
expansion: there are K, θ > 0 s.t. for every
two-dimensional subspace Px ⊂ Ecu

x

| det(Dϕt | Px)| ≥ Keθt for all x ∈ Λ, t ≥ 0.

Theorem (A., ETDS, 2021)

Every sectional-hyperbolic attracting set for a C2 vector
field G admits finitely many μ1, . . . , μk ergodic
physical/SRB measures s.t. hμi(ϕ

G
1 ) +

∫

ψG dμi = 0 and
Leb

�

U \
∑

iB(μi)
�

= 0.

Recall that ψG = − log | detDϕG1 | E
cu|.
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Statistical stability for sectional-hyperbolic
attracting sets

Since
sectional-hyperbolicity is a C1 open property,
then the family of vector fields having
sectional-hyperbolic attracting sets is C1 open; and
entropy expansiveness was already obtained by

M. J. Pacifico, F. Yang, J. Yang: “Entropy theory for
sectional hyperbolic flows”. An. l’IHP, 2020.

then we have all the conditions for statistical
stability for sectional-hyperbolic attractors.
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Contracting Lorenz family of
attractors
− − −−

also known as “Rovella attractors”
− − −−

which is NOT AN OPEN FAMILY of
vector fields
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The Rovella family of attractors

This is a modification of the geometric Lorenz
attractor – the are expanding direction at the
equilibrium is replaced by an area contracting
direction: start with a linear vector field
(ẋ, ẏ, ż) = (λ1x, λ2y, λ3z) in [−1,1]3 with real eigenvalues
at the singularity s.t.

−λ2 > −λ3 > λ1 > 0, r = −
λ2

λ1
, s = −

λ3

λ1
, and r > s+ 3.

Note that λ1 +λ3 < 0 while in the geometric Lorenz
attractor the construction starts with λ1 + λ3 > 0.
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Geometric construction and quotient map

Σ Σ

x=x=

λ

λ

λ

1

2 3

.

.

p.
− +11

Γ

L

+

−

Σ

+

Σ

−

3

2

1

+

_ Γ

R

R

Σ

Σ

S

λ

λ

λ
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Smooth foliation and quotienting

The condition r > s+ 3 ensures the existence of a C3

uniformly contracting stable foliation for the
Poincaré first return map of all small enough
perturbations of the contracting geometric
Lorenz flow.

Using this, we write the Poincaré first return map as
R0(x,y) = (T0(x),H0(x,y)), where H0(x,y) uniformly
contracts distances along y and

1 T0 : [−1/2,1/2] \ {0}→ [−1/2,1/2] is piecewise C3

with two onto branches s.t. T′0(x) = O(xs−1) at x = 0;
2 T0(0+) = −1/2 and T0(0−) = +1/2;
3 T′0 > 0 on [−1/2,1/2] \ {0};
4 ±1/2 are preperiodic repelling for T0.
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Family of 2-almost persistent attractors

Rovella (Bull. Braz. Math. Soc., 1993) showed that the
flow of this vector field G0 has an attractor

Λ0 = ∩t>0ϕ
G0
t (U) and its perturbations admit a

two-parameter family of vector fields which is
“almost persistent”, as follows.

There exists a 2-dimensional C∞ submanifold N of C3

vector fields X3(R3) containing G0 s.t. the subset S ⊂ N

corresponding to an attractor ΛGs = ∩t>0ϕ
Gs

t (U) for each
s ∈ S, then

lim
r→0

Leb(Br(x) ∩ S)

Leb(Br(x))
= 1,

where Br(x) is an r-ball in N and Leb is the area measure.
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Persistent asymptotic sectional-hyperbolicity

Theorem (Vivas, San Martin: Nonlinearity, 2020)

The attractor Λ0 is 2-dimensionally almost persistent
asymptotically sectional hyperbolic in the C3

topology.

A compact invariant partially hyperbolic set Λ of a
vector field G, with dcu = 2 = dimEcu, whose singularities
are hyperbolic, is asymptotically sectional hyperbolic if
there exists c∗ > 0 so that

lim sup
T→∞

1

T
log | det(DϕT | Ecux )| ≥ c∗, ∀x ∈ Λ \

⋃

σ∈Λ∩Sing(G)

Ws(σ).
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Statistical stability of the Rovella family

Theorem (A., JSP, 2021)

The family G of contracting Lorenz attractors, with
trapping region U, is such that each of its elements
admits a unique physical measure, whose basin covers
U except for zero Leb-measure subset and is statistically
stable.

The existence of the unique physical/SRB measure μa
for each Ga ∈ G follows from the fact that

the Poincaré map Ra(x,y) = (Ta(x),Ha(x,y)) satisfies
Ha(x, ·) is a uniform contraction;
Ta is a one-dimensional non-unif. exp. map with
slow recurrence to the discont. critical point {0}

then every ergodic acip νa w.r.t. T0 induces μa
which is an ergodic hyperbolic SRB-measure w.r.t.
Ga on Λa.
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The physical/SRB measure in the Rovella family

This ensures, by well-knonw arguments, that μa admits
an absolutely continuous disintegration along
unstable manifolds and is an ergodic physical
measure.

Moreover, since the flow direction on partially
hyperbolic sets is contained in the central-unstable
direction, then Oseledets’ Theorem ensures

∫

log | det(Dϕ
Ga

1 | E
cu)|dμa = λ+(x) ≥ c∗ > 0,

where λ+(x) = limT→∞ log | det(DϕT | Ecux )|1/T is the largest
Lyap. exponent along the two-dimensional bundle Ecu

for μa-a.e. x. Hence (Ledrappier-Young characterization)

hμa(ϕ
Ga

1 ) =

∫

log | det(Dϕ
Ga

1 | E
cu)|dμa > 0.
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Robust expansiveness

Denote by S(R) the set of surjective increasing
continuous functions h : R→ R. The flow is expansive
on an invariant compact set Λ if for every ϵ > 0
there is δ > 0 s.t. for any h ∈ S(R) and x ∈ Λ

d(ϕt(x), ϕh(t)(y)) ≤ δ,∀t ∈ R =⇒
=⇒ ∃t0 ∈ R s.t. ϕh(t0)(y) ∈ ϕ[t0−ϵ,t0+ϵ](x).

G is robustly expansive on Λs = ∩t>0ϕ
Gs

t (U), s ∈ N ∩ S,
if ∃ nghbhd. V of s in N s.t. ∀ϵ > 0 ∃δ > 0 s.t. for

u ∈ V ∩ S, x ∈ Λu = ∩t>0ϕ
Gu

t (U) and h ∈ S(R), then

d(ϕ
Gu

t (x), ϕ
Gu

h(t)(y)) ≤ δ,∀t ∈ R =⇒

=⇒ ∃t0 ∈ R s.t. ϕGu

h(t0)(y) ∈ ϕGu

[t0−ϵ,t0+ϵ](x).
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Robust entropy expansiveness from robust
expansiveness

Proposition (Bowen, 1972)

A robustly expansive attracting set ΛG(U) on a family
G : N→ Xr(M) admits δ > 0 which is a constant of
h-expansiveness for each flow in the family.

To fulfill all the conditions of statistical stability,
it is enough to obtain

Lemma (Robust expansiveness for Rovella attractors)

The family G of Rovella attractors is robustly expansive.
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Robust expansiveness for Rovella attractors

This is a consequence of the locally eventually onto
property as follows. We write c±

a
= Ta(0±) = limt→0± f (t)

and note that c−
a
< 0 < c+

a
and c±

a
→ ±1/2 when a→ 0.

Lemma l.e.o. (Lemma 4.1 in Metzger: An. l’IHP, 2000)

There exists a C3 neighborhood V of G0 so that if Ga ∈ V,
then the map Ta is locally eventually onto, that is, for
any interval J ⊂ [−1/2,1/2] \ {0} there exists n = n(J) > 0
so that fn(J) ⊂ [c−

a
,c+

a
].

Consequently, there does not exist a pair of points
x0 < y0 with the same sign in [−1/2,1/2] \ {0} so
that Tn

a
[x0,y0] does not contain the origin for all

n ≥ 1.
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Proof of statistical stability
− − −−

Consequence of continuity of
equilibrium states
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Argument for statistical stability

Theorem (Continuity of equilibrium states)

Let f : X × M→M and ψ : X × M→ R be continuous, with
X = N ∩ S, s.t.

1 fa admits some equilibrium state for ψa:
∃μa ∈ Pfa(M) s.t. Pfa(ψa) = hμa(fa) +

∫

ψa dμa for all
a ∈ X.

2 For each weak∗ accumulation point μ0 of μa when
a→ ∗ ∈ X, let ak → ∗ s.t. μk = μak → μ0, write
fk = fak , ψk = ψak and assume also that

1 there exists a finite Borel partition ξ of M such that
hμk (fk) = hμk (fk, ξ) for all k ≥ 1; and μ0(∂ξ) = 0.

2 Pfk (ψk)→ Pf∗(ψ∗) when k→∞.

Then every weak∗ accumulation point μ of (μk)k≥1 when
k→∞ is a equilibrium state for f∗ and the potential ψ∗.
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Entropy expansiveness and generating
partitions

Theorem (Bowen, 1972)
Let M be a compact metric space of finite dimension,
ϵ > 0 an h-expansiveness constant for f : M→M, and ξ
a Borel partition of M with diam(ξ) < ϵ. Then
hμ(f ) = hμ(f , ξ) for each f -inv. prob. masure μ.

We may now use the robust entropy expansiveness to
build a uniform generating partition ξ satisfying the
conditions for continuity of equilibrium states, together
with the assumption

hμa(ϕ
Ga

1 )−
∫

log | det(Dϕ
Ga

1 | E
cu)|dμa = 0

to apply the Theorem on Cont. of Eq. States with
ψa = − log | det(Dϕ

Ga

1 | E
cu)|.
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THE END.

OBRIGADO!
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PARABÉNS ZÉZE!
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