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1 Setting
Ergodic theory in a (tiny) nutshell

Dynamics: f : M →M Observable: ϕ : M → R

• Invariant measure: µ(f−1A) = µ(A);

• Ergodic measure: A = f−1A =⇒ µ(A) ∈ {0, 1}.

• Birkhoff Ergodic Theorem: if µ is ergodic, then
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Time average tends to space average

ϕn(x) =
1

n

n−1∑
i=0

ϕ(f ix)
µ−a.e−−−−→
n→∞

E(ϕ) =

∫
ϕdµ.

Continuous time
M smooth Riemannian manifold

Xt : M →M smooth flow (i.e., Xt+s = Xt ◦Xs for s, t ∈ R)

• Invariant measure: µ(XtA) = µ(A), ∀0 < t ≤ 1;

• Ergodic measure: ∃ε > 0 : A = XtA, ∀0 < t < ε =⇒ µ(A) ∈ {0, 1}.

• Birkhoff Ergodic Theorem: if µ is ergodic, then

Time average tends to space average

ϕT (y) =
1

T

∫ T

0

ϕ(Xty) dt
µ−a.e−−−−→
T→∞

E(ϕ) =

∫
ϕdµ.

1.1 Physical measures
Physical/SRB measure.

Is there an invariant physical/SRB measure µSRB?

That is, a measure µSRB so that Leb(B(µSRB)) > 0 where

B(µSRB) =

{
y ∈M :

1

T

∫ T

0

ϕ(Xty) dt −−−−→
T→∞

∫
ϕdµSRB ,∀ϕ ∈ C(M)

}

is the ergodic basin of µSRB .

This kind of measure provides asymptotic information on a set of trajectories
that one hopes is large enough to be observable in real-world models.

1.2 Stability
Statistical stability

Can we allow for small errors on the formulation of the dynamics not to disturb
too much the long term behavior?

If we consider

U = {Y vector field s.t. Y t admits physical measure µY }

and X ∈ U. Then X is statistically stable if
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Small errors disturb space average

‖Yn −X‖C1
Yn∈U−−−−→
n→∞

0 =⇒
∫
ϕdµYn

ϕ∈C0(M)−−−−−−→
n→∞

∫
ϕdµ

1.3 Existence
Some known results on existence of physical measures

−−−−Hyperbolic versus singular flows

Hyperbolic flows
Hyperbolic flows: all trajectories have a pair of complementary directions:

• in one of them all orbits converge to the trajectory;

• in the other direction all orbits diverge from the trajectory.

Hyperbolic flows are “classical”
Hyperbolic Theory is the basis for Dynamical Systems Theory: it provides the

most mathematically rigorous and deep understanding of an important class of dynam-
ical systems.

This is an open class of flows: all flows nearby an hyperbolic flow are also hyper-
bolic.

Hyperbolic flows do not admit fixed points (singularities or equilibria) accu-
mulated by regular orbits in invariant sets.

However, there are important open classes of systems which are not hyperbolic
and that frequently appear in applications.
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Singular flows which are “almost hyperbolic”
The Lorenz attractor is a flow with an equilibrium accumulated by regular orbits

which also belongs to an open class

Attractors and attracting sets
An invariant compact set Λ is an attracting set for a vector field X if there exists a

trapping region U s.t.

Xt(U) ⊂ U for large t > 0 and Λ =
⋂
t>0

Xt(U).

An attracting set becomes an attractor if Λ is transitive, that is, we can find x ∈ Λ s.t.

O+(x) = {Xt(x) : t > 0} is dense in Λ.

Existence of physical measures
family vec. fields physical measures ergodic basins
Anosov flows
(transitive)
Axiom A flows
(Hyperbolic)

unique
one for each
attractor

Leb(M \B(µ)) = 0
Leb(Ui \B(µi)) = 0
for each attractor

geometric Lorenz
attractor

unique Leb(U \B(µ)) = 0

contracting Lorenz
attractor

unique Leb(U \B(µ)) = 0

sectional-
hyperbolic
attracting sets

finitely many Leb
(
U \ ∪iB(µi)

)
= 0
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Except the contracting Lorenz (Rovella) attrator, all the other families are Cr
open families (r ≥ 1).

Physical measures and equilibrium states

Physical measures and equilibrium states
Let Λ be a sectional-hyperbolic attracting set / geometrical or contracting Lorenz

attractor / hyperbolic attractor for a C2 vec. field G with trapping region U . Then
the following are equivalent:

1. µ is an equilibrium state with respect to the central jacobian: hµ(X1) =
∫

log |detDX1 |
Ec| dµ > 0;

2. µ is a SRB measure, i.e., admits an abs. cont. disintegration along unstable
manifolds;

3. µ is a physical measure, i.e., Leb(B(µ)) > 0;

Moreover, the family E of all invariant physical measures is the following convex hull

E =

{
k∑
i=1

tiµi :
∑
i

ti = 1; 0 ≤ ti ≤ 1, i = 1, . . . , k

}
.

Entropy expansiveness

Topological entropy
Let g : M →M be a continuous map and K ⊂M .
For ε > 0, n ≥ 1 and x ∈M

B(x, ε, n) = {y ∈M : d(gjx, gjy) < ε, ∀0 ≤ j < n}.

A subset E ⊂M is a (n, ε)-generator for K if {B(y, ε, n) : y ∈ E} is an open cover
of K.

Let rn(K, ε) be the smallest cardinality of a (n, ε)-generator for K and r(K, ε) =
lim sup log rn(K, ε)1/n.

The topological entropy of g on K is given by

htop(g,K) = lim
ε→0

r(K, ε),

and the topological entropy of g is defined by htop(g) = htop(g,M).
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Entropy expansiveness
For x ∈M and ε > 0 we define the two-sided ε-dynamical ball at x as

B(x, ε,∞) = {y ∈M : d(gnx, gny) < ε, ∀n ∈ Z}

and say that g is ε-entropy expansive if all these infinite dynamical balls have zero
topological entropy, that is,

sup
x∈M

htop
(
g,B(x, ε,∞)

)
= 0.

Proposition
If G is entropy expansive, then the metric entropy function µ 7→ hµ(X1) is upper
semicontinuous.

1.4 Conditions
Conditions for statistical stability −−−−of families of

vector fields

Conditions for statistical stability
Let G be a collection of vec. fields with a trapping region U , s ∈ N 7→ Gs ∈ G is

a continuous parametrization, and Λs(U) = ∩t>0φ
Gs
t (U) the corresponding attracting

set.

Theorem
Assume each Λs supports finitely many ergodic physical measures µsi , 1 ≤ i ≤ ki s.t.
Leb

(
U \

∑
iB(µsi )

)
= 0; and

1. there are potentials ψs : Λs → R s.t. 0 = hµ(φGs
1 )+

∫
ψs dµ ⇐⇒ µ a physical

measure;

2. the following map is continuous Ψ : W (U) := {(s, x) ∈ N × U : x ∈
Λs(U)} → R given by Ψ(s, x) = ψs(x); and

3. the family G is robustly entropy expansive.

Then Gs ∈ G is statistically stable.

Statistical stability with several physical measures
In the general setting of the statement we have:

Statistical stability
For each converging sequence sn ∈ N to s ∈ N and every choice µsn of a physi-
cal measure supported on Λsn , every weak∗ accumulation point µ of (µsn)n≥1 is a
convex linear combination of the ergodic physical measures of Λs.

More precisely, this means that

1. there are weights αi ≥ 0 such that
∑
i αi = 1 and µ =

∑
i αiµ

s
i ; and

2. we have
∣∣∫ ϕdµsn −∑i αi

∫
ϕdµsi

∣∣ −−−−→
n→∞

0 for every continuous observable
ϕ : U → R.
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2 Examples

Known examples of application

2.1 Hyperbolic
Axiom A (hyperbolic) flows

Attracting sets for an Axiom A vector field G of class C2 are finite unions of
hyperbolic attractors (basic pieces) which admit a unique physical measure that is also
the unique eq. state w.r.t. ψG = − log |detDφG1 | Eu| (here φGt is the flow generated
by G).

Moreover, the hyperbolic property is robust and so the map X 7→ ψX is well
defined for vector fields X close to G in the C2 topology.

In addition, each X is a neighborhood of G is not only hyperbolic but also entropy
expansive.

Hence, we may apply the Main Theorem and deduce statistical stability for
each basic piece of an Axiom A vector field which is an attractor.

2.2 Singular-hyperbolic
Singular-hyperbolic attracting sets – encompassing the geometrical Lorenz at-
tractor

Singular-hyperbolicity is an extension of the notion of hyperbolicity encompassing
sets with equilibria accumulated by regular orbits.

A singular-hyperbolic set Λ is

• a partially hyperbolic set: there exists a splitting TΛM = Es ⊕ Ecu, where
ds = dimEsx ≥ 1 and dcu = dimEcux = 2 for x ∈ Λ, and constants C > 0,
λ ∈ (0, 1) s.t. for t > 0 we have

– uniform contraction on Es: ‖Dφt|Esx‖ ≤ Cλt; and

– domination: ‖Dφt|Esx‖ · ‖Dφ−t|Ecuφtx
‖ ≤ Cλt.

• with area expansion on Ecu: |det(Dφt | Ecux )| ≥ Cλ−t;

• any equilibrium of Λ, if any, is hyperbolic.

Singular-hyperbolic attracting sets and statistical stability
The assumptions of the Main Theorem are known to hold for singular-hyperbolic

attracting sets with the potential ψG = − log |detDφG1 | Ecu|: existence of finitely
many physical/SRB measures and robust entropy expansiveness for singular-hyperbolic
attracting sets is established in

• A., M. J. Pacifico, Pujals, Viana: “Singular-hyperbolic attractors are chaotic”.
TAMS, 2009. [unique SRB, transitive case]
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x

y=f(x)

• A., Souza, Trindade: “Upper Large Deviations Bound for Singular-Hyperbolic
Attracting Sets”. JDDE, 2019. [finite # erg. SRB, non-transitive]

• M. J. Pacifico, F. Yang, J. Yang: “Entropy theory for sectional hyperbolic flows”.
An. l’IHP, 2020. [robust entropy expansiveness]

Other strategies to obtain statistical stability
The dynamics on singular-hyperbolic attracting sets is amenable to reduction to a

global Poincaré return map on a finite collection of cross-sections:

Reduction to one-dimensional transformation
There is also a further reduction to a quotient map along the stable leaves tangent

to the stable bundle.
For the geometric Lorenz attractor, this procedure ends with the one-dimensional

Lorenz transformation.

Statistical properties from the reduction
The physical measure can be constructed from the acip of the one-dimensional

map and statistical stability can be deduced from this:

8



• Alves, Soufi: “Statistical stability of geometric Lorenz attractors”. Fund. Math.,
2014.

• Bahsoun, Ruziboev: “On the statistical stability of Lorenz attractors with aC1+α

stable foliation”. ETDS, 2018.

Many other finer properties can be deduced:

• A., Melbourne: “Exponential decay of correlations for nonuniformly hyperbolic
flows with a C1+α stable foliation, including the classical Lorenz attractor”.
AHP, 2016.

• Bahsoun, Melbourne, Ruziboev: “Variance Continuity for Lorenz Flows”. AHP,
2020

New examples of application

2.3 Sectional-hyperbolic
Sectional-hyperbolic flows

Sectional-hyperbolicity is an extension of singular hyperbolicity with central di-
mension dcu > 2 where the area expansion property is replaced by sectional expan-
sion: there are K, θ > 0 s.t. for every two-dimensional subspace Px ⊂ Ecux

|det(Dφt | Px)| ≥ Keθt for all x ∈ Λ, t ≥ 0.

Theorem (A., ETDS, 2021)
Every sectional-hyperbolic attracting set for a C2 vector field G admits finitely many
µ1, . . . , µk ergodic physical/SRB measures s.t. hµi(φ

G
1 )+

∫
ψG dµi = 0 and Leb

(
U \∑

iB(µi)
)

= 0.

Recall that ψG = − log |detDφG1 | Ecu|.

Statistical stability for sectional-hyperbolic attracting sets
Since

• sectional-hyperbolicity is a C1 open property, then the family of vector fields
having sectional-hyperbolic attracting sets is C1 open; and

• entropy expansiveness was already obtained by

– M. J. Pacifico, F. Yang, J. Yang: “Entropy theory for sectional hyperbolic
flows”. An. l’IHP, 2020.

then we have all the conditions for statistical stability for sectional-hyperbolic at-
tractors.

Contracting Lorenz family of attractors −−−− also
known as “Rovella attractors” −−−− which is NOT

AN OPEN FAMILY of vector fields
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2.4 Contracting Lorenz
The Rovella family of attractors

This is a modification of the geometric Lorenz attractor – the are expanding
direction at the equilibrium is replaced by an area contracting direction: start with
a linear vector field (ẋ, ẏ, ż) = (λ1x, λ2y, λ3z) in [−1, 1]3 with real eigenvalues at the
singularity s.t.

−λ2 > −λ3 > λ1 > 0, r = −λ2

λ1
, s = −λ3

λ1
, and r > s+ 3.

Note that λ1 + λ3 < 0 while in the geometric Lorenz attractor the construction
starts with λ1 + λ3 > 0.

Geometric construction and quotient map

Σ Σ

x=x=

λ

λ

λ

1

2 3

.

.

p.
− +11

Γ

L

+

−

Σ

+

Σ

−

3

2

1

+

_ Γ

R

R

Σ

Σ

S

λ

λ

λ

Smooth foliation and quotienting
The condition r > s + 3 ensures the existence of a C3 uniformly contracting

stable foliation for the Poincaré first return map of all small enough perturbations
of the contracting geometric Lorenz flow.

Using this, we write the Poincaré first return map asR0(x, y) = (T0(x), H0(x, y)),
where H0(x, y) uniformly contracts distances along y and

1. T0 : [−1/2, 1/2] \ {0} → [−1/2, 1/2] is piecewise C3 with two onto branches
s.t. T ′0(x) = O(xs−1) at x = 0;

10



2. T0(0+) = −1/2 and T0(0−) = +1/2;

3. T ′0 > 0 on [−1/2, 1/2] \ {0};

4. ±1/2 are preperiodic repelling for T0.

Family of 2-almost persistent attractors
Rovella (Bull. Braz. Math. Soc., 1993) showed that the flow of this vector field

G0 has an attractor Λ0 = ∩t>0φ
G0
t (U) and its perturbations admit a two-parameter

family of vector fields which is “almost persistent”, as follows.

There exists a 2-dimensional C∞ submanifold N of C3 vector fields X3(R3) con-
taining G0 s.t. the subset S ⊂ N corresponding to an attractor ΛGs

= ∩t>0φ
Gs
t (U)

for each s ∈ S, then

lim
r→0

Leb(Br(x) ∩ S)

Leb(Br(x))
= 1,

where Br(x) is an r-ball in N and Leb is the area measure.

Persistent asymptotic sectional-hyperbolicity

Theorem (Vivas, San Martin: Nonlinearity, 2020)
The attractor Λ0 is 2-dimensionally almost persistent asymptotically sectional hyper-
bolic in the C3 topology.

A compact invariant partially hyperbolic set Λ of a vector field G, with dcu = 2 =
dimEcu, whose singularities are hyperbolic, is asymptotically sectional hyperbolic if
there exists c∗ > 0 so that

lim sup
T→∞

1

T
log |det(DφT | Ecux )| ≥ c∗, ∀x ∈ Λ \

⋃
σ∈Λ∩Sing(G)

W s(σ).

Statistical stability of the Rovella family

Theorem (A., JSP, 2021)
The family G of contracting Lorenz attractors, with trapping region U , is such that each
of its elements admits a unique physical measure, whose basin covers U except for zero
Leb-measure subset and is statistically stable.

The existence of the unique physical/SRB measure µa for each Ga ∈ G follows
from the fact that

• the Poincaré map Ra(x, y) = (Ta(x), Ha(x, y)) satisfies

– Ha(x, ·) is a uniform contraction;
– Ta is a one-dimensional non-unif. exp. map with slow recurrence to the

discont. critical point {0}

then every ergodic acip νa w.r.t. T0 induces µa which is an ergodic hyperbolic
SRB-measure w.r.t. Ga on Λa.
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The physical/SRB measure in the Rovella family
This ensures, by well-knonw arguments, that µa admits an absolutely continuous

disintegration along unstable manifolds and is an ergodic physical measure.

Moreover, since the flow direction on partially hyperbolic sets is contained in the
central-unstable direction, then Oseledets’ Theorem ensures∫

log |det(DφGa
1 | Ecu)| dµa = λ+(x) ≥ c∗ > 0,

where λ+(x) = limT→∞ log |det(DφT | Ecux )|1/T is the largest Lyap. exponent
along the two-dimensional bundle Ecu for µa-a.e. x. Hence (Ledrappier-Young char-
acterization)

hµa
(φGa

1 ) =

∫
log |det(DφGa

1 | Ecu)| dµa > 0.

Robust expansiveness
Denote by S(R) the set of surjective increasing continuous functions h : R → R.

The flow is expansive on an invariant compact set Λ if for every ε > 0 there is δ > 0
s.t. for any h ∈ S(R) and x ∈ Λ

d(φt(x), φh(t)(y)) ≤ δ, ∀t ∈ R =⇒
=⇒ ∃t0 ∈ R s.t. φh(t0)(y) ∈ φ[t0−ε,t0+ε](x).

G is robustly expansive on Λs = ∩t>0φ
Gs
t (U), s ∈ N ∩ S, if ∃ nghbhd. V of s in N

s.t. ∀ε > 0 ∃δ > 0 s.t. for u ∈ V ∩ S, x ∈ Λu = ∩t>0φ
Gu
t (U) and h ∈ S(R), then

d(φGu
t (x), φGu

h(t)(y)) ≤ δ, ∀t ∈ R =⇒

=⇒ ∃t0 ∈ R s.t. φGu

h(t0)(y) ∈ φGu

[t0−ε,t0+ε](x).

Robust entropy expansiveness from robust expansiveness

Proposition (Bowen, 1972)
A robustly expansive attracting set ΛG(U) on a family G : N → Xr(M) admits δ > 0
which is a constant of h-expansiveness for each flow in the family.

To fulfill all the conditions of statistical stability, it is enough to obtain

Lemma (Robust expansiveness for Rovella attractors)
The family G of Rovella attractors is robustly expansive.
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Robust expansiveness for Rovella attractors
This is a consequence of the locally eventually onto property as follows. We write

c±a = Ta(0±) = limt→0± f(t) and note that c−a < 0 < c+a and c±a → ±1/2 when
a→ 0.

Lemma l.e.o. (Lemma 4.1 in Metzger: An. l’IHP, 2000)
There exists a C3 neighborhood V of G0 so that if Ga ∈ V, then the map Ta is locally
eventually onto, that is, for any interval J ⊂ [−1/2, 1/2]\{0} there exists n = n(J) >
0 so that fn(J) ⊂ [c−a , c

+
a ].

Consequently, there does not exist a pair of points x0 < y0 with the same sign in
[−1/2, 1/2] \ {0} so that Tna [x0, y0] does not contain the origin for all n ≥ 1.

3 Proof

3.1 Statistical Stability

Proof of statistical stability−−−− Consequence of
continuity of equilibrium states

3.2 Continuity of equilibrium states
Argument for statistical stability

Theorem (Continuity of equilibrium states)
Let f : X ×M →M and ψ : X ×M → R be continuous, with X = N ∩ S, s.t.

1. fa admits some equilibrium state for ψa: ∃µa ∈ Pfa(M) s.t. Pfa(ψa) =
hµa(fa) +

∫
ψa dµa for all a ∈ X .

2. For each weak∗ accumulation point µ0 of µa when a → ∗ ∈ X , let ak → ∗ s.t.
µk = µak → µ0, write fk = fak , ψk = ψak and assume also that

(a) there exists a finite Borel partition ξ of M such that hµk
(fk) = hµk

(fk, ξ)
for all k ≥ 1; and µ0(∂ξ) = 0.

(b) Pfk(ψk)→ Pf∗(ψ∗) when k →∞.

Then every weak∗ accumulation point µ of (µk)k≥1 when k → ∞ is a equilibrium
state for f∗ and the potential ψ∗.

Entropy expansiveness and generating partitions

Theorem (Bowen, 1972)
Let M be a compact metric space of finite dimension, ε > 0 an h-expansiveness con-
stant for f : M → M , and ξ a Borel partition of M with diam(ξ) < ε. Then
hµ(f) = hµ(f, ξ) for each f -inv. prob. masure µ.
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We may now use the robust entropy expansiveness to build a uniform generating
partition ξ satisfying the conditions for continuity of equilibrium states, together with
the assumption

hµa
(φGa

1 )−
∫

log |det(DφGa
1 | Ecu)| dµa = 0

to apply the Theorem on Cont. of Eq. States with ψa = − log |det(DφGa
1 | Ecu)|.

THE END.

OBRIGADO!
PARABÉNS ZÉZE!
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